Programming with Memory
The question is to determine the median of an array formed by blending two sorted arrays.
That is:
Given two sorted arrays nums1 and nums2 of size m and n, respectively, return the median of the two sorted arrays.
- Example 1:
Input: nums1 = [1,3], nums2 = [2] Output: 2.00000 Explanation: merged array = [1,2,3] and median is 2.
- Example 2:
Input: nums1 = [1,2], nums2 = [3,4] Output: 2.50000 Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
- The overall run time complexity should be
O(log (m+n))
. nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Approaches
S1: Insertion through halfway
Speed:2ms
| Memory: 40.3MB
The approach fills a new ArrayList
with the entirety from nums1
array, then proceeds to insert nums2
elements until the counter reaches the median index.
public double findMedianArrayList1(int[] nums1, int[] nums2) {
int i1 = 0;
int i2 = 0;
int imed = (nums1.length + nums2.length) / 2;
List<Integer> list = new ArrayList();
for (int n : nums1) {
list.add(n);
}
while (i1 <= imed && i2 < nums2.length) {
while (i1 < list.size() && nums2[i2] >= list.get(i1)) {
i1++;
}
list.add(i1, nums2[i2]);
i2++;
}
if ((nums1.length + nums2.length) % 2 == 0) {
return (list.get(imed) + list.get(imed - 1)) / 2D;
}
return list.get(imed);
}
S2: Retain Last Two Additions -- Two-Loops
Speed: 3ms
| Memory: 40.4MB
A prototype to S3, this method first toggle-adds the smaller of latest num1[i]
and num2[j]
throughout the length of num1
. Then it proceeds to add the remainder in num2
in the second loop until the counter reaches the median size.
During the run, (only )the last two additions to the arrays are kept track of by cycling one after another.
In turn, either the last or its average with the second last one will be returned, depending on the oddity of the blended array.
public double findMedianArrayList2(int[] nums1, int[] nums2) {
int prev2 = - 1;
int prev1 = -1;
int i = 0, j = 0;
int med = (nums1.length + nums2.length) / 2;
for (; i < nums1.length && i+j < med + 1;) {
if (j < nums2.length && nums2[j] < nums1[i]) {
prev2 = prev1;
prev1 = nums2[j];
j++;
} else {
prev2 = prev1;
prev1 = nums1[i];
i++;
}
}
for (; j < nums2.length && i+j <= med; j++) {
prev2 = prev1;
prev1 = nums2[j];
}
return ((nums1.length + nums2.length) % 2 == 0) ? (prev1 + prev2) / 2D
: prev1;
}
S3: Retain Last Two Additions -- Unified Loop
Speed : 2ms
| Memory: 40.1MB
The final edition, this method unifies the two loops in S2 as a while
loop.
It toggle-adds between the lesser of latest num1[i]
and num2[j]
, unconditionally adding one side all if another was all iterated over.
public double findMedianArrayList3(int[] num1, int[] num2) {
int j = 0;
int i = 0;
int mid = (num1.length + num2.length) / 2;
int prev2 = -1, prev1 = -1;
while ((i+j) <= mid) {
prev2 = prev1;
if (i < num1.length && (j >= num2.length || num1[i] <= num2[j])) {
prev1 = num1[i];
i++;
} else {
prev1 = num2[j];
j++;
}
}
return ((num1.length + num2.length) % 2 == 0) ? (prev1 + prev2) / 2D
: prev1;
}
Conclusion
While the three methods show similar performances at minimal level, testing on extensive dataset revealed following comparison:
For dataset (n = 100,000) with (0 <= nums*.length < 10000)
[TEST-LOG]: [RESULTS]:
#1: [Uni-Loop Retainer] -- Average: 0.000043s -- Efficiency: 100% -- [FASTEST]
#2: [Two-Way Retainer] -- Average: 0.000069s -- Efficiency: 63%
#3: [Insertion Halfwayer] -- Average: 0.000831s -- Efficiency: 5% -- [SLOWEST]
While a much more efficient mechanism would be expected in such gigantic usage, this still proves the improvement at S3, emphasizing the need for a clearer and compact algorithm.